International Journal of Engineering and Applied Sciences (IJEAS)

ISSN: 2394-3661, Volume-10, Issue-12, December 2023

Weighted Number Operator in Continuous-Time
Guichardet-Fock Space
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Abstract—This paper proves that the two-dimensional
weighted number operator § ' is a densely defined unbounded

self adjoint operator in continuous-time Guichardet-Fock
space [*(I;z) - But when sup, v, <+, S is a bounded
linear operator. Meanwhile this paper
representations of S,

(l)fR fR w(s,H)VV V'V, dsdt,

gives two

S, = E en’J,, o(s,t) =c,

n=1

where a)(s’ t) is nonnegative function on , _]n is the orthogonal
projection operator from J2 ([;n) to its linear subspace

Lz( ['(”);;7). Furthermore some conclusions related to are

presented.
Index Terms—continuous-time Guichardet-Fock space,
weighted number operator, nonnegative real function,

point-stae modified stochastic gradient.

I. INTRODUCTION

In 1984, Husdson and Patharathy proposed the quantum
stochastic calculus theory[1], which is a noncommutative
extension of stochastic integral theory of classical , and an
operator stochastic integral theory[2]. Quantum stochastic
integral has a very perfect development in Fock space,
which can describe physical systems with properties, such as
accretion and annihilation, so quantum stochastic integral
has a wide range of applications in physics, engineering and
other disciplines [2],[3].

Guichardet-Fock space is a basic concept in the quantum
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field, which is mainly applied to quantum stochastic integral
problems. Guichardet-Fock space is not only isomorphic
with Fock of classical Ito stochastic integral theory in linear
operations, but also richer than its spatial structure[4].
Therefore, it is very meaningful to study the relevant
conclusions of Guichardet-Fock space.

In the literature [5], the author defined the weighted
number operator, and studied its properties and applied it in
quantum Markov semigroups in the Bernoulli functional
space [*(Q). In the literature [6], Attal discussed the

Guichardet-Fock  space [*([7; n) the

generalized operator Mallivin the variational theory, in
which the operator has a maximum definition field, thus
realizing the composition of the algorithm with the help of
exponential vectors. In the literature [7], the author modified
the stochastic gradient V and point-stae stochastic gradient

continuous-time

V.. The modified operator v, %S and its conjugate
operator %: which has the physical meaning of true

annihilation and accretion. Thus, it can describe the physical
system with accretion and annihilation. Reference [8]
extends the modified stochastic gradient and Skorohod
integral of [7], and provides the relationship between the
modified stochastic gradient and Skorohod integral after
extension. In the literature [9], the author discussed the
properties and representations of the number operator
N in [? ;) > and makes the first attempt at the

representation of the operators in I*(77;7). Then, in the

literature [10], the author studied the Dirichlet forms with in
L*(I';n). Based on the above analysis, this paper proved
that the properties and representations of the weighted
number operator §_ in ()

This paper is organized as follows. In section 2, we fix
some necessary notation and recall main notion and facts
about the Guichardet-Fock space. In section 3, we state and
prove our main results.

II. PRELIMINARIES

Throughout the paper, let R be the set of all

nonnegative real number, /7 denotes the finite power set of
, namely

I“={(7CR+ |#a<00},
where #o means the cardinality of ¢ as a set. For Vu =1,

let 77 be the collection of n elements subsets, namely
r = {O'EF|#0' = n},
and agree that 7@ — {QS} Obviously, 7 ={J,_, " For
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convenience, ¢, 7 denotes the elements in /7. Usually, we

by [*(I") the
complex-valued functions space on 7.
Let 5 be a complex separable Hilbert space, the inner

denote space of square integral

product and norm denoted by <> and H . The space
n n

L*(I';n) of 5-valued square-integral functions defined on
I, well-known as product

(T = L(IN®n-
The norm in > (I;#)is ‘ , and the inner product defined

as

((f:8)=[.{f(@).8(0)),do.V [, g EL(I"s1)):
Definition 1[4]. ForVs,sER_ Vo,7E1, define
Vo:=max{s:s€o}; Ao:=min{s:sEo};
o_= o-\{v o-};a\s =oc\{s};oUs=0 U{s},
1.(s)= {1’ $ €7, denotes the indicative function of 7.

‘ 0, s
Definition 2[7]. For V' € [*(I";5), the modified stochastic
gradient V£ of 7 bea z -valued process on
I'xR, defined as
Vi(z,s)=(1-1(5))f(zUs),¥(z,s) ET xR,

and

DomV = {fEL*(I;7) [ (#o)f (@) do < +oo}.
Definition 3[7]. For erLZ (I;n),sER,, the point-state
modified stochastic gradient ﬁf of / be a function on
defined as
V.f(@) =Vf(z,5)=(1-1,(s))f(z Us),¥(z,5) ET' xR,
and its adjoint operator defined as

Vif(@@)=1(s)f(z\s),VTET.

Remark 1 [7]. The point-state modified stochastic gradient
%s and its adjoint %: are bounded linear operator on

L*(I7;n) and
fl-. -t
Lemma 1[9]. There's the only telescope

S LI = @ LI 1)

=1,

It meets condition Vre I? (), existing
f.ELX(I'";5), Vn=0 makes f =@~ f, and

HfH2 = EannHz . Here, [>(I""";#) naturally seen as the
subspace of [ (I7;5). Specifically, 1*(I"V;5) = 5.
Definition 4 [10]. ¢(s,?) is nonnegative real function on
Rf , two-dimensional weighted number operator §  of

I*(I";n)as defined below

S,f(@)=v,(0)f(0), [fEDomS,,

and

DomS,, = {fEL )| [ (v, (@) |/ (@) do < +}.

There y_ (o) = E - E _ (s,1) which is the number
function of 1> (I"; 7).

Definition 5 [10]. 7(s) is nonnegative real function on
R,

one-dimensional weighted number operator A, of as
defined below

N,f(o)=#,(0)f(0), fEDomN,,

and

Dom N, = {f EL (I | [, (#, ()| (@), do < +}.

There #, (5) = E@h(s)'
Definition 6 [9]. The number operator N in L*(17; %)
defined as

Nf (o) =#o f(5), fEDomN,

with

Dom N = {fEI*(T;n) |fr(#a)2\f(a)\j do <+l

Remark 2 [10]. e(s,?) is nonnegative real function on

R?.
() If
h(s), s=t,
1) =
w(s,?) { 0, e
then v, (c) =#, () and S, = N,
) If
h(s)=1, =1,
w(s,t) = { (s) y
0, S =1

then v (o) =#o and § = N.

III. MAIN RESULTS
In the present section, we will prove § is the linear

operator of unbounded densely defined self adjoint in
L*(I;n), but when sup_v_ (o) <+, S, is a bounded

linear operator. Next, we obtains the following two
representations of §and related conclusions.

Theorem 1. ¢)(s,¢) is nonnegative real function on Ri R
If sup, .o @(s,1) <+ , then S, be a linear densely
defined and unbounded operator in 72 (I;n)-

Proof: Firstly, we will prove that the § is densely
defined operator in 72 (I;7)-

o =sup a(s,t) < +oo-
5,620

For Vn=0,NfEL*(I'";n),
S, f(e)=8,1_,()f(0)=1,,()S,f (o)
=1,,,(0),(0)f(0) =an’f (o),

and

I./1" = f.1S./ @), do [ a*n'|f (o), do

= a2n4HfH2 < 400, (D
which implies that fE€DomsS, And because the algebraic
direct sum @  [*(I"";n) of {L*(I'"”;n);n=0} are
densely defined linear subspace of Lz( r;n), hence S, is
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densely defined operator. Next, we prove that the § is
unbounded operator. By (1)
sup

Sme - HSwa
@z /-1

then we know that the S, is unbounded.

=an’ —>oo(n—>oo)a

Theorem 2. )(s,¢) is nonnegative real function on Ri R
If sup, v, (o) <+, then § is a bounded operator in
L*(I7;7), and

Proof: Hypothesis g = sup_ v, (o). for Y/ EDom S,
S/ =, @F (@) do

=p[|f (o), do

=B <=

Hence S is a bounded operator and HSwH <p
On the other hand, for Vf &Dom S,
v, (@) f (@) =[v.(0)f (@) =[S.f ()=

which implies that sup v (o) =< HS‘UH In conclusion

@

Theorem 3. y(s,t) is nonnegative real function on Ri. In

the weak sense, the two-dimensional weighted number
operator S in J? (I";n) canbe expressed as follows

S, =fRJ;{+ (s, V'V V'V, dsdt. 2
Proof: Fist of all, we prove that integral
[ fi os. z)<<§j%ﬁj€, 7. g>> dsds 3)
exists. For Vf, g€Dom S, ,VsER,,
[0, @1 @), do<+o.f (v
VIV, f(©)=1,(s)V,f(c\s)
=1,)(1-1,,())f (0 \sUs) =1,(5)1 (0).

Because of Cauchy-Schwartz inequality,
U]L,-ﬁh CU(S, t)<<%t§Y%:%tfa g>> dsd t‘
= [ Jo o 0{(9:9.7.9.9.2)fasa
[ UP (5,01, ()1, (1 f(0). g (o), dg‘ dsds

=13 S wls.0[(f(@).g(),|do
= [ v, ©@|(/(0).g(@),|do
< [ v, (0)|f (@) |2(@)], do

w
r

= U (v, @)1/ @) do }5 {[ (v, (@)|g(@)] do }5

< 400,
Hence, the integral (3) exists.
Next, for V£ €Dom S, ,Vg € L*(I';7), have

() \g(a)\ do < +00;
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Jo w(s”)<<%z%ﬁf§tf,g>>dsdt
= [ f f @01, (D, (O /(). 8()), dordsde

=L<E Ew<s,r>f<a),g(a)> do
= [, (v ()1 (0).2(c)), do
=((S,/.2)),

which implies that (2) establishment.

Theorem 4. The two-dimensional weighted number
operator § is a self-adjoint operator in ’(I;n)-

Proof: For Vf g€DomS§S, ,,
dsdr, g>>

(.58 ~{(f,_fi. @-0¥;
v >>dsdt
g)

\\

—f f <<w(st§S§SV§
—ff<<fw(st§%%% >dsdt

- <<f’fR+ﬁ1+ w(s,OV,V V'V gdsdt>>

=((f.S,2)).
which implies that §” =§ , namely S, is self-adjoint

operator.

Theorem 5. ¢y(s,¢) is nonnegative real function on Ri If
for Vs,tER,, w(s,t) =c> then two-dimensional weighted

number operator § = have

I (I";n), namely

spectrum decomposition in

©

S, = 2 cen’J,.

There J ~is the orthogonal projection operator

from 77 (1"; ) to its linear subspace 12 (1";
J, (Tsm) = (73 )
S1,,070).

Proof: According to Lemma 1 and the proof of
Theorem 1, it can be inferred that {L2 (r; n),n = 1}are

n) , namely

linear subspace of J? () and Algebra in Direct Sums

@, [*(I"";n)is linear densely defined space, and
@7, L’(I'";n) CDomsS,,

For fE&1X(I";n)
$,/(0)=v,(0)f(@) =3 Sef(e)=cl#a) f(o)

s&o 1o

= c(#0)1,.,(0) f (o) = cn’f ().
Hence, for erl? I;n)»

[.en'lf@) do= czn“i‘lrm(a)f(a)‘z do
Next, by Definition 4, when a)(s
E

=Efcn

n=l1 =
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DomS, = {f EL(Iin)| Sen' |, /] <+
n=1

therefore, for Vf €Dom S, 2“’71 2

For m > n, have

S5

=1 =1

Namely, Ew,lcannfis convergent in I*(I"; 7).
For Vf €L*(I';n),

= SRS = 0mn —0).

k=n+1

k

I i (J./(0),g(0)), d
-, E cn’1,.,(0)f(0),2(0)), do

B3 efta)(r@.2), a0

v (o) f(o
Theorem 6. ((s,¢) is -I(‘Gnneéat)njje( rga%

M ={*(I"'";n),n >T}<<l'§w»é &&’e of two-dimensional
weighted number operator §_, i
McCS and S |M=S,.
Proof: According to the proof of Theorem 5, it can be
inferred that Af C Dom S, -

If §, EDomS, &, EM ,and & —& (n— ), then
S(uéfo - Swgn Hz
= [ ]2 (@)6(@) = v, (@)1, (0)¢, (@) do

which implies that §

o)) do
(fu1)1>d7t10n on R2

2
= [ @) @) do
= [ b, @)@ do-f (@), @) do
— 0(n — @),
which implies that § |M =S the image of

IM=S, is densely, i.e. M is core of two-dimensional
weighted number operator §

Q

Theorem 7. If ¢»(s,¢) is nonnegative real function on Ri

and v _(o)is bounded, then Dom N is a core of S - In

particular, for bounded nonnegative real function h(s)on
R,, DomN is a core of N,-

Proof: For ¢ = sup,,_, w(s,t) <+, have

v, (o) = E Ew(s,t) = a(# (O‘))2 < +00,
For Vf&€Dom N, f (#0)2‘f(0—)"2 do < +o - Hence,
[ 0@ 1@ do = [ a*(#(@))|f (@) do

= [ @ (#@)) #@)|f (o), do < +=.

”4HJan is convergent.

10

Namely £ €Dom S, . ForVn = 0,YVf €L*(I""™;7), have
f(o)= lr(,,)(O')f(O'),
= fr\Nf(a)\j do = fr‘nf(a)‘j do

=n* [ /@) do =/ <+,
which implies that ¥ €Dom NV, i.e.

{C(I'";n),n=1,CDomN .
According to Theorem 6, Dom NV is a core of § . Similarly,

o

it can be inferred that Dom N is a core of N N
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